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Abstract— We present a simple yet effective paradigm to
accurately predict the future trajectories of observed vehicles
in dense city environments. We equipped a large fleet of cars
with cameras and performed city-scale structure-from-motion
to accurately reconstruct 10M positions of their trajectories
spanning over 1000h of driving.

We demonstrate that this information can be used as a
powerful high-fidelity prior to predict future trajectories of
newly observed vehicles in the area without the need for any
knowledge of road infrastructure or vehicle motion models. By
relating the current position of the observed car to a large
dataset of the previously exhibited motion in the area we can
directly perform prediction of its future position.

We evaluate our method on two large-scale data sets from
San Francisco and New York City and demonstrate an order
of magnitude improvement compared to a linear-motion based
method. We also demonstrate that the performance naturally
improves with the amount of data and ultimately yields a system
that can accurately predict vehicle motion in challenging situ-
ations across extremes in traffic, time, and weather conditions.

I. INTRODUCTION

For autonomous vehicles, critical tasks like path planning

and obstacle avoidance require the ability to predict the fu-

ture evolution of the environment around the robot. Complex

environments such as urban city traffic present significant

challenges when it comes to such planning and perception.

In the near future, these methods will play a significant role

in reducing road accidents.

Movement predictions in these semi-structured environ-

ments are usually based on assumed motion dynamics of

the vehicles around the car, for example by using a Kalman

Filter. A common disadvantage of these models is that they

can generalize badly to the vast complexity of real world

scenarios such as busy intersections or turns. The exhibited

motion of vehicles in these situations usually cannot be

predicted reliably using simple motion models like linear

extrapolation, especially if the prediction horizon is larger

than a few seconds. Another approach is to annotate the road

infrastructure in the form of semantic map, capturing traffic

rules. This has a benefit that it can extrapolate the expected

motion of a car provided that it follows these rules. However,

the amount of work needed to produce such reliable maps

and then to keep them updated is a disadvantage.

In this work we propose an alternative approach. Inspired

by the impact of large-scale data sets on computer vision
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Fig. 1: Our system can accurately predict the future position

of a vehicle based only on the previous motion in the area.

This prior motion was crowd-sourced by a fleet of mobile-

phone-equipped cars.

[1] we utilise a large amount of crowd-sourced high-quality

motion data to drive the motion prediction. We collected it by

equipping a large vehicle fleet with cameras and performing

structure-from-motion at city-scale to accurately reconstruct

their trajectories. We use these data as samples from the

underlying motion distribution in the area and show how

these data can be used for future motion prediction of newly

observed cars. It has the benefits of needing zero human

annotation, it implicitly captures modelled and unmodelled

aspects of the vehicle motion, scales to large city-scale

scenarios and improves with time as the amount of data

increases.

This system can be used universally as a motion-prediction

step in various vehicle-tracking systems for the purpose of

vehicle safety and autonomy.

We evaluate the method on two city-scale data sets

specifically collected for this experiment. We demonstrate

that the system can be used to drive motion prediction at
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large scale in a variety of traffic environmental conditions.

To our knowledge this is the first published approach to

be constructed and evaluated at this scale. Specifically, we

present:

• A simple way to create large-scale accurate priors of

vehicle motion as a by-product of building a crowd-

sourced city-scale 3D map of the environment.

• A method for accurately predicting a vehicle’s future

position using the extracted prior from the area.

• A comprehensive evaluation on two city-scale data

sets in San Francisco and New York City containing

millions of samples. We show that the method vastly

improves the precision over a baseline method and also

demonstrate continuously improving performance as the

amount of prior data grows.

The rest of this paper is organized as follows. In the

following section we revisit some of the key works in the area

of motion prediction and on usage of large-scale data sets. In

Sec. III we detail how an unstructured motion prior can be

constructed and used to accurately predict a vehicle’s future

position. We evaluate the method in Sec. IV and conclude

in Sec. V.

II. RELATED WORK

Various methods have been proposed over years to un-

derstand and model vehicle motion dynamics, driver intent

and vehicle interactions with the environment and neigh-

boring agents. In most cases, motion prediction involves

Fig. 2: Examples of the prior trajectories in San Francisco

data set as generated by a randomized fleet of camera-

equipped cars and reconstructed by large-scale structure-

from-motion.

relying fully or partly on a vehicle dynamics model. [2]

compare and evaluate several motion models for tracking

vehicles. They conclude that constant turn-rate and acceler-

ation model(CTRA) perform the best among constant turn-

rate and velocity(CTRV), constant steering angle and veloc-

ity(CSAV), constant curvature and acceleration (CCA) and

purely linear motion models such as constant velocity(CV)

or constant acceleration(CA). Such models are usually com-

bined with Kalman filtering [3] or Bayesian filtering [4] for

path prediction. However, these approaches are able to per-

form predictions only for a very short window into the future.

[5] combine a constant yaw-rate and acceleration model with

a maneuver classifier to predict vehicle trajectories. But their

methods are restricted to limited scenarios and constrained

by the number of maneuvers.

Recently, the focus has shifted to data-driven approaches

to learn vehicle dynamics rather than explicitly crafting

them. These usually employ Dynamic Bayesian networks

[6], Gaussian mixture models [7] [8] [9], Hidden Markov

models [8], Neural networks [10] [11] or a combination of

these. These achieve better performance than pure vehicle

dynamics based approaches. However, they are either trained

for specific limited scenarios like highways or tend to learn

a general model that do not utilize environment-specific cues

such as traffic pattern in the area, changes in the environment

structure, etc.

Our approach, on the other hand, utilizes location specific

information for accurate predictions. Instead of learning a

global model, we rely on the historical vehicle trajectories

in the locality to perform on-the-fly prediction. Additionally,

our system decouples the prediction system and environment

knowledge thereby enabling easy update to environment

priors.

We leverage the pervasive nature of cheap cameras to col-

lect city-scale motion patterns and environment information

and show that this information can be effectively used for

trajectory prediction without any explicit modelling.

III. LARGE-SCALE MOTION PRIOR

The presented method estimates a car’s future position in

3D space given its current observed position using a motion

prior G in the area. Formally, given the car’s observed state

s0 = (x0, r0, v0) consisting of position x0 ∈ R3, rotation

r0 ∈ SO(3), and velocity v0 ∈ R in the space we aim to

predict its state after t > 0 seconds:

p(st|s0, G). (1)

The motion prior we propose to use consists of a large

set of individual trajectory samples that contain accurate 3D

positions and rotations of vehicles driven through the city in

the past:

G = {G1, G2, ..., GN}, (2)

where each trajectory Gi = {si1, s
i
2, ..., s

i
m} is a sequence

of observed positions, rotations, and velocities of the car at

regular time intervals t = 1, 2, 3, ...,m as the car had been

driven around the city.
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As discussed in Section IV this method was successfully

applied in a city-scale scenario where such a prior can be

automatically extracted as a by-product of building a large-

scale crowd-sourced 3D map of the environment. Specifi-

cally, we do not use any manual or semantic annotations of

the environment or any knowledge of traffic rules. Instead,

we assume each trajectory implicitly captures all relevant

information in the exhibited behaviour. Some examples of

these trajectories are displayed in Figure 2.

(a) σv = 5

(b) σv = 25

Fig. 3: Effect of σv on sampling. With increased σv we draw

samples from a wider range of prior states with different

velocities.

To predict the future position of a vehicle at a time t,

we hypothesize that the car is following the same trajectory

pattern as one of the cars in the past at the same location

had followed. Specifically, for each prior state sij we assume

that the vehicle is going to follow the same motion pattern

as the vehicle that generated the prior trajectory continuing

from that state. Under this assumption the pose of the car in

the future is going to be

st = sij+t + ǫ, (3)

where sij+t is the observed pose of the vehicle previously

driven through the area after t seconds after the queried state

and ǫ is a random noise modelling the fact that the trajectory

can slightly differ.

The distribution of the future pose is then a weighted sum

of these individual distributions

p(st|s0, G) =
1

Z

∑
K(sij , s0)p(st|s

i
j+t, ǫ), (4)

where Z is a normalization factor

Z =
∑

K(sij , s0), (5)

and K(sij , s0) measures the similarity of the prior state to

the current state capturing the likelihood that it can indeed

follow the exhibited prior motion pattern.

We model this likelihood as the sum of similarities of

individual factors

K(sij , s0) = exp{−
‖xi

j − x0‖
2

σ2
x

−
‖rij − r0‖

2

σ2
r

−
‖vij − v0‖

2

σ2
v

}

(6)

where ‖xi
j − x0‖

2 is the euclidean distance of the sample

position in the 3D space, ‖rij−r0‖
2 is the relative difference

of the heading angles, and ‖vij − v0‖
2 is the difference in

the linear speed. The parameters σx, σr and σv model the

relevance of the individual components. Note that we do not

Algorithm 1 Motion prior sampling

Input

s0: initial state (position, rotation, velocity)

t: time horizon

G: motion prior

Output

ŝ1:N : samples of the predicted future car state

1: Z ←
∑

i,j K(sji , s0)
2: for i = 1, 2, 3, ...,m, j = 1, 2, 3, ..., N do

Compute each prior state’s relevance to initial state

3: µ
j
i ←

1

Z
K(sji , s0)

4: end for

Generate N future state samples

5: for k = 1, 2, 3, ..., N do

Sample a prior state according to relevance

6: sij ← MultinomialSample(G, µ)

Compute a future state sample

7: skt ← sij+t + ǫ

8: end for

9: return ŝ1:N
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Fig. 4: Vehicle motion predictions at intersections. The

green circle represents the query position and velocity at

time t. The red icons represent the distribution of predicted

samples at t + 5. Note that the road ahead is a one-way

route in opposite direction. Our prior implicitly capture this

information without any manual annotation.

need to manually choose a subset of the dataset as the motion

prior in a location for measuring similarity. The exponential

term in Equation 6 lets us use all the trajectories in the dataset

for a city as the prior G and requiring us to set only the

hyper-parameters σx, σr, σv for the entire city.

The probability density function p(st|s0, G) can be eval-

uated explicitly in a closed form. Moreover, a sampling

procedure can be implemented efficiently by first sampling

the corresponding prior state sij according to relevance factor

K , performing table look-up for sij+t and adding noise. The

algorithm is summarized in Algorithm 1

Examples of samples drawn from the distribution St are

displayed in Figure 3. As shown, sampling follows the

previously observed trajectories of prior motion in the area

while parameters σ model the relevance of the individual

components of the state. For example, a small value of

σv results into predictions matching the current velocity

while large σv results into predictions sampled using a wider

variety of the previously observed initial velocities. This

might be useful if the initial velocity is uncertain or unknown

(e.g., when the car is observed for the first time).

In Section IV we evaluate the sampling accuracy on a

large data set using this strategy. Despite the fact that the

method is rather simple, it is very effective in practice once

the prior G covers the area well.

IV. EXPERIMENTS

In this section we evaluate the performance of the method

described in Sec. III for predicting the future trajectories

of cars in the city. In particular, we measure the likelihood

of observing a car at its future position predicted by our

method and also compare it to a simpler linear-motion model

commonly used in many approaches. We demonstrate that

after collecting a sufficient amount of data the described data-

driven method can accurately predict the future position of a

car while also significantly outperforming a simpler linear

motion model. At the end of the section we explore the

failure cases of the method and suggest possible directions

for its improvement.

A. Data sets

To evaluate the method we collected a data set of 10M

images captured by a fleet of 50 drivers using camera-

equipped mobile phones capturing imagery data at regular

3Hz intervals in Downtown San Francisco and New York

City. Examples from this data set are displayed in Figure

5. In total, this data set covers almost 1000h of driving at

different time, weather, and traffic conditions experienced by

the fleet during its operation. Next, we performed a large-

scale structure-from-motion reconstruction to recover both

the 3D map of the city and accurate 3D trajectories taken by

the individual drivers. The resulting trajectories capture the

motion pattern exhibited by the drivers in the fleet precisely

localised in 3D space.

We use a one-off split method: when evaluating a trajec-

tory we remove it from the data set and use the rest of data

from the city as a motion prior G. We then compare the true

trajectory with that predicted by the model.

To measure the effect of data set size, we uniformly sample

a subset of 1M, 2M, 3M , 5M and 7M of the full 10M dataset

such that the relative density of trajectories across locations

remains the same. The results in Table II shows the effect of

dataset size (and thus prior size) on prediction error.

B. Motion prediction accuracy

To evaluate the motion prediction accuracy we measure

the probability of predicting the correct position p(st|s0, G)
as defined in Eq. (4). We report two metrics:

1) The average negative log likelihood −logp(st|s0, G)
for different values of t. This metric directly captures

the probability of observing a car at a particular

position, as defined by the predictive distribution. In-

tuitively, a more accurate method would have a lower

negative log likelihood of the observed data than a less

accurate method.

2) The fraction of the predictive distribution that lies

within a radius of d meters of the correct position

for various values of d. This captures the likelihood

that a randomly sampled position from the predictive

distribution is going to be within this limit.

In addition to absolute numbers we compare the accuracy

against a simpler linear-motion model commonly used in

various Kalman-filter based methods. We use a noisy linear

model defined as

vt ∼ v0 + ǫv, (7)

rt ∼ r0 + ǫr, (8)

xt ∼ x0 + rt ∗ vt + ǫx, (9)

and fit the noise constants ǫv, ǫr, ǫx to minimise the negative

log-likelihood of the data set.
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Fig. 5: Dataset used to evaluate the method. We have collected over 10M images in San Francisco and New York using

dashcam-mounted mobile phones. These images were used to perform large-scale structure-from-motion to reconstruct

accurate vehicle trajectories in the city over a period of several weeks.

Collision point

Linear model prediction

Our model prediction

Fig. 6: A comparison to the linear model. The big red circles

indicate the position of an oncoming car at t and t+1. Under

the linear model, it is expected to collide with our vehicle.

Our model corrects for this error using the motion prior.

The results are summarized in Tab. I, Tab. II and Fig. 7.

While the linear model prediction error grows dramatically

with the look ahead time window, our model’s error is

much slower to grow. This makes the method suitable for

predicting motion in long occlusions. A typical scenario of

when using motion prior leads to better results is shown in

Figure 6. While the linear model predicts a motion leading

to collision the prior-based method predicts previously ex-

perienced curved motion.

Finally, Fig. 8 shows one of the failure modes of the

method. It depicts a segment of the map with insufficient

Data Model 1 2 3 4 5

All Motion prior 28.74 30.56 32.80 37.55 41.48
All Linear model 5.30 24.21 116.19 302.90 383.74

Intersection Motion prior 27.61 32.67 33.56 40.34 44.34
Intersection Linear model 5.23 25.12 144.90 355.35 441.22

TABLE I: Average negative log likelihood for different

prediction horizons (in seconds). As the prediction horizon

increases the predictive power decreases. The prior-based

method, however, degrades more gracefully than the linear-

motion method.

priors to account for all possible trajectories, thus resulting

in incorrect predictions. This is a typical performance when

not enough data from the area was collected and improves

itself as all possible motions are exhibited over time.

Fig. 7: The average fraction of the predictive distribution

within distance dm. As the predictive distance increases,

the motion-prior model quality increases rapidly, while the

linear-motion model is slow to improve.
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Dataset size 1M 2M 3M 5M 7M

Prediction error 67.63 58.66 52.75 45.26 42.77

TABLE II: Average negative log likelihood for 5 second

prediction horizon as the size of the dataset increases.

(a)

Predicted positions at $t+5$

Position at time $t$

Actual position at $t+5$

(b)

Fig. 8: A failure mode due to lack of observed data. In (a)

we show the observed prior trajectories in the map, and in

(b) we show the incorrect prediction for a car to turn right

due to lack of observed right turns.

V. CONCLUSION

We presented a non-parametric method predicting future

poses of vehicles in urban environments leveraging mo-

tion data which can be collected efficiently through crowd-

sourcing at city-scale. Unlike parametric based approaches

the method improves over time as the amount of samples

increases avoiding the need for extensive model complexity

and tuning.

The method is basic step behind many situation awareness

and tracking systems in self-driving vehicles. In the future

we would like to explore its integration with more complex

camera or lidar-based systems.

There are also many ways for its improvement. For

example, to increase precision, the relevance function can

be extended to include another factors beyond similarity in

position, rotation and velocity to previous samples. These can

be time of day to capture different traffic flows or semantic

information, such as positions of other cars.
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