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Abstract— We present a location-specific method to visually
track the positions of observed vehicles based on large-scale
crowd-sourced maps.

We equipped a large fleet of cars that drive around cities
with camera phones mounted on the dashboard, and performed
city-scale structure-from-motion to accurately reconstruct the
trajectories taken by the vehicles. We show that these data
can be used to first create a system enabling high-accuracy
localisation, and then to accurately predict the future motion
of newly observed cars in the camera view. As a basis for the
method we use a recently proposed system [1] for unsupervised
motion prediction and extend it to a real-time visual tracking
pipeline which can track vehicles through noise and extended
occlusions using only a monocular camera.

The system is tested using two large-scale datasets of San
Francisco and New York City containing millions of frames.
We demonstrate the performance of the system in a variety
of traffic, time, and weather conditions. The presented system
requires no manual annotation or knowledge of road infras-
tructure. To our knowledge, this is the first time a perception
system based on a large-scale crowd-sourced maps has been
evaluated at this scale.

I. INTRODUCTION

A fundamental task of robotics perception and planning
in dynamic environments is the ability to predict the future
evolution of the situation around the robot. For example, a
self-driving car needs to know about the positions of other
cars and their future motion to plan and avoid collisions.

These predictions are usually based on assumed motion
dynamics of the vehicles around the car such as using
Kalman Filter. A common disadvantage of these models is
that the assumed model can generalise badly to the vast
complexity of the real world such as complex intersections or
turns. The exhibited motion of vehicles in these situations can
often not be reliably predicted using simple motion models,
such as linear extrapolation, especially if the prediction
horizon is longer than a few seconds. A different approach is
to annotate road infrastructure as a semantic map capturing
traffic rules. This has the benefit that it can extrapolate
the expected motion of a car assuming its motion follow
the captured rules. However, this approach requires a large
amount of work to constantly annotate and update the map
such that it remains reliable despite environmental change.

In this work we propose an alternative approach. Inspired
by the impact of large-scale datasets in computer vision
[2] we utilise a large amount of crowd-sourced high-quality
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Fig. 1: Our system combines city-scale crowd-sourced map
and localisation system to predict motion and track surround-
ing vehicles.

motion data to drive the motion prediction. We collected it by
equipping a large fleet of cars with cameras and performing
structure-from-motion at city-scale to accurately reconstruct
their trajectories.

We use these data to draw samples from the underlying
motion distribution for that particular place, and show how
these data can be used for predicting the future motion
of newly observed cars [1]. It has the benefit of requiring
no human annotation while implicitly capturing modelled
and unmodelled aspects of the vehicle motion, scaling to
large city-scale scenarios and improving with time as the
amount of data increases. The proposed system can be used
universally as a motion-prediction step in various vehicle-
tracking systems for the purpose of vehicle safety and
autonomy. We show it can be easily integrated with a camera-
equipped vehicle and large-scale, high-accuracy localisation
system to create a place-specific 3D tracking pipeline.

We evaluate the method on two city-scale datasets specifi-
cally collected for this experiment. We show the system can
be used at large scale to drive motion prediction and tracking
at large scale in a variety of traffic and environmental condi-
tions. To our knowledge this is the first published approach
to be constructed and evaluated at this scale. Specifically, we
present:
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Fig. 2: Examples of the prior trajectories in San Francisco
dataset as generated by a fleet of camera-equipped cars
and reconstructed by large-scale structure-from-motion. The
resolution of the prior on well-travelled intersections allows
to accurately distinguish individual lanes and possible turns
from the exhibited patterns.

sourced large-scale motion prior

o A comprehensive evaluation on two city-scale datasets
in San Francisco and New York containing millions of
samples

o A performance evaluation of the proposed visual track-
ing pipeline and comparison against a baseline model.

The rest of this paper is organised as follows. In the
following section we revisit some of the work done in the
area of motion prediction, object tracking and on using
large-scale datasets. In Section III we summarise a recently
proposed work [1] of how an unstructured motion prior can
be constructed and used to accurately predict car’s position
in the future. Then, in Section IV-A we present a method
combining this motion prior with a monocular sensor to
create a vehicle-tracking pipeline. We evaluate the method
in Section V and conclude in Section VI.

II. RELATED WORK

Vehicle trajectory estimation and urban 3D tracking are
active areas of study in computer vision and robotics. Various
methods have been proposed over years to understand and
model vehicle motion dynamics, driver intent and vehicle
interactions with the environment and neighboring agents.

Usually, motion prediction involves relying fully or partly
on a vehicle dynamics model. The authors of [3] compare
and evaluate several motion models for tracking vehicles.
These models are usually combined with Kalman filtering
[4] or Bayesian filtering [S] for path prediction. However,
these approaches are only able to perform predictions in a
very short window into the future.

In [6] the authors combine a constant yaw-rate and accel-
eration model with a maneuver classifier to predict vehicle
trajectories. But their methods are restricted to limited sce-
narios and constrained by the number of maneuvers.

Recently, the focus has shifted to data-driven approaches
to learn vehicle dynamics rather than explicitly crafting
them. These usually employ dynamic Bayesian networks
[7], Gaussian mixture models [8], [9], [10], hidden Markov
models [9], neural networks [11], [12], [13] or a combination
of these. These achieve better performance than pure vehicle
dynamics based approaches. However, they are either trained
for specific scenarios like highways or tend to learn a general
model that do not utilise environment-specific cues such
as traffic pattern in the area, changes in the environment
structure, etc.

Our approach, on the other hand, utilises location specific
information for accurate predictions. Instead of learning a
global model, we rely on the historical vehicle trajectories
in the locality to perform on-the-fly prediction. Additionally,
our system decouples the prediction system and environment
knowledge thereby enabling easy update to environment
priors.

In [14] the authors propose the use of kernel density
estimation to measure similarities between a test trajectory
and the set of all past trajectories in a dataset. Although
in spirit they rely on using previous trajectory history, their
approach involves learning a prediction model by comparing
a query trajectory across the whole space of full-length past
trajectories and is therefore not scalable. Instead, we use
a simpler similarity measure over individual positions and
poses in a local region to perform prediction.

Another related domain is the use of environment cues for
3D tracking. Such methods often rely on 3D scene analysis
to augment tracking. In [15] the authors reason about 3D
scene layout and object positions at urban intersections while
the authors of [16] perform 3D object tracking by enforcing
scene geometry and 3D dynamics based constraints. In [17]
the ground plane and 3D location priors are used to obtain
3D object detections. However they do not perform 3D
tracking and their ground plane assumption fails in real
driving scenarios involving up-hill and down-hill slopes. The
authors of [18] present a system for 3D tracking from moving
vehicles in a modular way similar to ours by using global
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trajectory hypotheses generated from a motion model and
geometric constraints in the scene. However, their approach
relies on a calibrated stereo rig mounted on the car while we
rely only on a monocular camera. In addition, they do not
use large-scale ground and motion priors like us.

To the best of our knowledge, this is the first work that
proposes the use of large-scale environment priors for urban
vehicle tracking in city-scale.

III. LARGE-SCALE MOTION PRIOR

In this section we summarise the method of [1] which
predicts a car’s future position in 3D space given its currently
observed position, using a motion prior G in the area. This
method is then used as a component in the novel full visual-
tracking pipeline described in the next section. Formally,
given the car’s observed state so = (g, 1o, Vo) consisting of
position xy € R?, rotation ry € SO(3) and velocity vy € R?
we aim to predict its state after ¢ > 0 seconds: p(s¢|so, G).

The considered motion prior consists of a large set
of highly-accurately localised individual trajectories of the
crowd-sourcing fleet through the area

G={G"G*...,GN}, )

where trajectory G = {si,s%,...,s% } is a sequence of
observed position, rotation and velocity of the car at regular
intervals t = {1,2,3,...}.

This prior can be automatically extracted by performing a
large-scale structure-from motion using pictures captured by
the vehicle phone camera mounted on the dashboard. This
is the sole source of input and we don’t use any explicit
annotation about the environment or traffic rules. Examples
of the car trajectories are displayed in Figure 2. As shown,
the resolution of the prior allows to distinguish individual
lanes and possible turns directly from the exhibited patterns.

Algorithm 1 Motion prior sampling

Input
So: initial state (position, rotation, velocity)
t: time horizon
G': motion prior

Output

51.n: samples of the predicted future car state

Compute prior state relevance
11 Z < 3, K(si,s0)
2 )+ $K(s1,50)
Sample future state
3: for k=1,23,...,N do
Sample prior state according to relevance
4: s; < MultinomialSample(G, u)
Sample future state
5: S 33» 4t T €
6: end for
7: return Si.y

Fig. 3: Vehicle motion predictions at intersections. The
orange icon represents the query position, pose and velocity
at time ¢. The red dots represent the distribution of predicted
samples at ¢ 4+ 5. Note that the road ahead is a one-way
route in opposite direction. Our prior implicitly capture this
information without any manual annotation.

To predict the future position of a vehicle at time ¢ we
assume a hypothesis that the car is following the same
trajectory pattern as one of cars in the past at the same
location. Specifically, for each prior pose s§ we assume a
hypothesis the vehicle is going to follow the same motion
pattern starting at that pose. Under this assumption the pose

of the car in the future is going to be
st =55, 6 )

where 5; ¢ s the observed pose after time ¢ and € is a random
noise modelling the fact the trajectory can slightly differ.

The distribution of the future pose is then a weighted sum
of these individual distributions

1 . .
Psilso, G) = - > K(shsolp(silsiare), ()
where Z is a normalisation factor
Z =Y K(s},s0), 4)

and K (s%,s0) measures the similarity of the prior pose
to the current pose expressing the likelihood it can indeed
follow the exhibited motion pattern.
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This likelihood is modelled as the sum of similarities of
individual factors
I = woll® _lrg = roll®_Jiej = woll*,
o2 o2 o2

®)
where ||z} — xo[|? is the euclidean distance of the sample
in the 3D space, |5 — ro|? is the relative heading angle
difference and ||v; —uo || is the difference in the linear speed.
The parameters o, o, and o, model relevance of individual
components.

We evaluate the probability density function p(s¢|sg, G)
explicitly and use an efficient sampling procedure detailed
in Algorithm 1.

In Figure 3 we show some samples drawn from the dis-
tribution S;. The sampling follows the previously observed
trajectories of prior motion in the area while parameters o
model relevance of the individual components of the state.
Small o, results in predictions matching the current velocity
value, while large o, results in predictions sampled using all
previously observed initial velocities. This could be useful if
the initial velocity is uncertain or not known (such as when
the car is observed for the first time).

The following section shows how this method can be
effectively used in a pipeline tracking poses of cars surround-
ing a camera-equipped vehicle.

K(s;»7 s0) = exp{—

IV. VISUAL TRACKING PIPELINE

In this section we incorporate the single-shot motion pre-
diction system from the previous section into a novel fully-
fledged pipeline that continuously tracks the positions of
nearby cars around a camera-equipped vehicle. This can be
used as a situation-awareness module in planning algorithms
to predict and react to the motion of the other traffic partic-
ipants. We combine a high-accuracy localisation subsystem,
a convolutional neural network-based car detector, and the
proposed motion prediction subsystem.

Although the presented method specifically uses monoc-
ular cameras, it should be straightforward to generalise the
method to other hardware configurations using LIDAR, radar
or stereo cameras as well. We choose to showcase this con-
figuration as it is, arguably, not only the most prevalent and
cost-effective hardware platform, but also the most difficult
for implementation due to the missing depth perception of
LIDARs or stereo cameras. We show that using the motion
prior alleviates this problem and helps to predict the correct
motion with excellent results.

A. Pipeline overview

The input to the system is a live stream of images
1y, 15, I3, ... captured at regular intervals At by a camera
mounted on a moving vehicle. The algorithm processes this
stream iteratively frame by frame and in each step produces
a set of 3D positions and velocities of visible vehicles
st,87,...,s% and their 2D observations ¢}, c?, ..., ci'.

First, for each new image I; we determine its exact
pose ¢ € SE(3) in the 3D space. Although large-scale
visual localisation is a challenging topic, as discussed in

Section V this can be done very efficiently by performing
a feature-based visual localisation using the same structure-
from-motion 3D map constructed to extract the prior motion.
This guarantees that the captured image pose is accurately
aligned with respect to the prior motion samples in the area
necessary for 2D-3D association described later.

Second, each image is processed by a convolutional neural
network to produce a list of vehicle observations c;, ¢?, ..., ¢}
in the form of 2D bounding boxes and a confidence distribu-
tion over the object categories. For our implementation, we
use a standard Faster-RCNN object detector and consider
only cars detected above a certain threshold.

Next, each observation can be a part of an existing track
(seen before at time ¢ > t — T where T is the tracking
window) or a new track. For each ¢} and ¢, we consider a
hypothesis that we observed the same vehicle and consider its
previous position s}, and likely motion induced by prior G.
Similarly, we consider another hypothesis that we observed
a new vehicle. Details of this step are described below.

Finally, for each ¢! we choose the most likely candidate
hypothesis and the associated estimated pose s;. The entire
algorithm is summarised in Algorithm 2.

B. Frame-to-frame association

As described in Section IV-A, for each detected car cf; we
consider a hypothesis p*/ that it is an observation of the same
previously detected vehicle ¢},. For each such hypothesis we
compute the most probable 3D pose and velocity supporting
this hypothesis s,

sy = argmaxp(siv Ci|C’Zu sf/, ey ©
st

This probability can be factorised as

p(st; celew s v, qi, G) o< p(edler)p(silee, gi)p(selsy, G),
(N
where
e p(ce|ey) is the similarity in visual appearance,
o p(st|ct) is the consistency of the observed vehicle in
the 2D image and its position in 3D space, and

N epro:rjeclion error (in pixels)
|

e < |
'\——\,J
Camera with accurate position and orientation

Fig. 4: The re-projection term models the consistency be-
tween 3D pose and 2D detection.
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Fig. 5: An example of the visual consistency factor used in
the pipeline. We extract and match ORB features between
the images and use the ratio of shared features between
the bounding boxes of detected objects to determine their
correspondence. This alone does not provide satisfactory
results (see the car in red and orange boxes) but together
with the motion prior leads to a correct solution.

o p(s¢|sy, G) is the likelihood of the exhibited motion as
described in (3).

Intuitively, a solution which satisfies the appearance model
but violates the prior motion model will have a low probabil-
ity and similarly for the opposite case while a good solution
satisfies all of the models.

The consistency of the visual appearance p(ct|cy) is
modelled by the number of visually matching features on
both detected cars. We first extract ORB features for both
images I;, Iy and match the descriptors between the frames
[19]. The probability is then calculated as the ratio of shared
features between c; and c;t':
fhi
I
The entire concept is illustrated in Figure 5.

To ensure that the estimated 3D position of the car
corresponds to its 2D detection we use a simple re-projection
constraint illustrated in Figure 4:

p(siler) = N(m(ze, pr), 0c), )

where m(x¢,p:) is the projected position of the 3D point
x; into the camera image I; located at position p;. This is
illustrated in Figure 4.

As both p(st|e;) and p(s¢|sy, G) are continuous and
differentiable, the maximisation of (6) can be performed
using a classical Gauss-Newton optimisation method.

Finally, the probability that the observation belongs to a
new vehicle is modelled by a constant pg.

P(Ct ‘Ct’) = ®)

Algorithm 2 Tracking Pipeline

Input
I, .. n: camera images
G': motion prior
T': tracking window length
Output

C1.n: detected cars in 2D images
S1:.n: 3D pose and velocity of detected cars

1: Ko« 0
2: for t =1,2,3,...,N do

Estimate 6dof pose of the image.
3: qt < localise(1})

Detect 2D bounding boxes of the visible cars.
4: ctlzKi <+ detectVehicles(I)
5: for i =1,2,...,K; do

Init solution with a new observation track

6: st « argmax, p(s|ct, ¢, G)
Try to associate with any previously observed car

7: fort! =t—-1,t—2,...,.t—T do

8: for j =1,2,...., Ky do o

: sy’ < argmax, p(s, élc, sl q, G)
10: if p(s;’) > p(si) then
11: i+ sy
12: end if
13: end for
14: end for
15: end for
16: end for

V. EXPERIMENTS

In this section we evaluate the performance of the outlined
visual tracking pipeline. First we describe the used dataset
and proceed with the evaluation of the method and the
influence of the employed crowd-sourced motion prior.

A. Datasets

To evaluate the method we collected a data set of 10M
images captured by a fleet of 50 drivers using camera-
equipped mobile phones capturing imagery data at regular
3Hz intervals in Downtown San Francisco and New York
City. Examples from this data set are displayed in Figure 6.
In total, this data set covers almost 1000 hours of driving at
different time, weather, and traffic conditions experienced by
the fleet during its operation. Next, we performed a large-
scale structure-from-motion reconstruction to recover both
the 3D map of the city and accurate 3D trajectories taken by
the individual drivers. The resulting trajectories capture the
motion pattern exhibited by the drivers in the fleet precisely
localised in 3D space. This map is also used to visually
localise position of the camera when the system is used in
prediction mode to provide the pose of the camera necessary
for 2D-3D association as described earlier.

For evaluating the visual tracking pipeline we randomly
select subset of 1000 manually annotated image pairs lo-
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Fig. 6: The datasets used to evaluate the method. We have collected over 10M images in San Francisco and New York
using dashcam-mounted mobile phones. These images were used to perform large-scale structure-from-motion to reconstruct
accurate vehicle trajectories in the city over a period of several weeks.

calised in the map with ground-truth vehicle detection and
their frame-to-frame association.

B. Motion model

We consider three different models for predicting a car’s
future motion p(s¢|sg, G):

o No model (vision only)

o Proposed crowd-sourced model from Section III

o Simple linear model.
As the linear model we consider a simple noisy linear model

commonly used in various Kalman-filter-based methods de-
fined as

vy o~ U+ €y, (10
Ty o~ To+ €, (11)
Ty~ Lo+ Ty x U+ €gy (12)

and fit the noise constants €,, €,, €, to minimise the negative
log-likelihood —logp(s¢|so, G) of the data set.

As further discussed in [1] the motion-driven model
significantly outperforms simpler linear model. The results
are summarised in Table I, and Figure 8. While the linear
model prediction error grows with the prediction horizon,
our model’s error is much slower to grow.

This makes the method suitable for predicting motion in
long occlusions. A typical scenario of when using motion

Data Model | 1 2 3 4 5
All Motion prior 28.74  30.56 32.80 37.55 41.48
All Linear model 5.30 24.21 116.19 30290 383.74
" Intersection ~ Motion prior | 27.61 ~32.67 ~33.56 ~ 4034 ~ 4434
Intersection ~ Linear model 5.23 25.12 14490 355.35 44122
TABLE 1I: The average negative log likelihood

—logp(st|so, G) for different prediction horizons (in
seconds) of crowd-sourced motion prior [1]. As the
prediction horizon increases the predictive power decreases.
The prior-based method, however, degrades more gracefully
than the linear-motion method.

]

. Collision point]

Linear model prediction|

Crowd-sourced motion prediction/ /&&

T nmm

Fig. 7: A comparison of our model to the linear model. The
big red circles indicate the position of an oncoming car at ¢
and ¢ + 1. Under the linear model, it is expected to collide
with our vehicle (orange). Our model corrects for this error
using the motion prior.

prior leads to better results is shown in Figure 7. While
the linear model predicts a motion leading to collision the
prior-based method predicts previously experienced curved
motion.

Figure 10 shows one of the failure modes of the crowd-
sourced prior. It depicts a segment of the map with insuf-
ficient priors to account for all possible trajectories, thus
resulting in incorrect predictions. This is a typical perfor-
mance when not enough data from the area was collected
and improves itself as all possible motions are exhibited over
time.

C. Visual tracking accuracy

The performance of the proposed visual tracking pipeline
is largely defined by the accuracy of the frame-to-frame
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Fig. 8: The average fraction of the predictive distribution
within distance d between crowd sourced prior [1] and
a linear model. On average, a random sample from the
distribution based on using the prior motion has a higher
chance to be near the true position as in the case of a linear
model.

association subroutine which is performed at every step
of the algorithm as defined by (6). Specifically, we first
evaluated a single-shot prediction: given one detection ¢ of
the car we measure the ability to correctly predict its future
position and associate it with a new observation c¢; of the
same car at time {. We measure the following properties:

1) Re-projection error of the predicted pose before asso-
ciation [in pixels],

2) Error of the predicted pose before association [in me-
ters] computed as the difference between the predicted
and the projected pose from the observation at time ¢,

3) Success rate of the association.

We measure these quantities for different values of t to
simulate the effect of occlusions and/or noisy detections.

We also compare the resulting association rate with a pure
visual approach when no prediction pose is available and the
association is driven purely based on the visual similarity
term in Equation 8.

The results are summarised in Table II. It captures the
performance of the system on initialisation. Using the motion
priors helps to reduce the error rate and outperform a purely
visual approach universally over the entire prediction hori-
zon. Figure 9 shows a typical scenario where the motion prior
reduces incorrect associations. Due to an insufficient number
of visible observations the system cannot distinguish between
two visually similar cars. Using the motion priors our method
penalises incorrect association since the likelihood of cars
moving in that direction at that particular region of the map
is very low.

Finally, we were interested in evaluating the situation
when two correct observations are provided and thus the
velocity of the vehicle can be estimated. This is a typical
scenario when the vehicle is being reliably tracked. We

method
Prior motion
Prior motion
Prior motion
Vision-only

metric | 1 2 3 4 5
re-projection error 19.19  23.66 3525 39.76 524
pose error estimate 1.49 1.54 1.65 1.75 1.91

association rate 0.86 0.77 0.69 0.61 0.54
association rate 0.81 0.68 0.60 0.54 048

TABLE II: The prediction pose error and association rate of
a car with unknown velocity at different prediction horizons
and its comparison to a vision-only approach.

method metric | 1 2 3 4 5
Prior motion re-projection error 2.49 3.71 5.69 7.35 10.86
Linear motion  re-projection error | 14.71  27.68 48.11 63.82  87.6
" Prior motion ~ pose error estimate | 049 ~ 039 ~ 0.70° ~ 0.94 = "1.06

Linear motion  pose error estimate 1.42 1.58 1.89 243 343

Prior motion association success | 0.97 0.92 0.83 0.76 0.70
Linear motion  association success | 0.84 0.73 0.67 0.61 0.54
TABLE III: Performance of motion prior vs linear model in

predicting a car with known velocity.

compared this case to a linear model described earlier. The
results of this are summarised in Table III. The performance
is greatly improved because the knowledge of the velocity
allows to select the prior motion pattern more accurately.

VI. CONCLUSION

In this work we presented a method for visually tracking
motion of nearby vehicles using a camera system. This
system uses a crowd-sourced data-driven non-parametric
approach to predict the motion of visible vehicles.

We show that such an approach requires no form of
annotation and is easy to scale to city sized data. We perform
evaluations to show the effectiveness of our motion predic-
tion method as a stand-alone technique and in combination
with a monocular camera-based tracking pipeline.

There are many avenues to extend our system. In the

Fig. 9: The effect of the prior on the data association. An
incorrect association and velocity estimate without using a
motion prior based on a vision-only approach [left]. Cor-
rectly separated tracks and velocity estimate with presented
vision + motion prior [right].
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Position at time t|

Fig. 10: Example failure case caused by insufficient prior
data. The observed prior trajectories in the area [top] result-
ing into incorrect prediction for a car to turn right due to the
lack of observed right turns [bottom].

future, we would like to integrate our system with other
sensors, such as LIDAR, radar or stereo-camera. We
would also like to extend the method to learn to predict
the behaviour of other traffic participants, particularly
pedestrians and explore how the interaction between
different agents can be effectively taken into account.
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